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Abstract

Coronavirus disease (COVID-19) has been declared as a pan-
demic by WHO with thousands of cases being reported each
day. Numerous scientific articles are being published on the
disease raising the need for a service which can organize,
and query them in a reliable fashion. To support this cause
we present AWS CORD-19 Search (ACS), a public, COVID-
19 specific, neural search engine that is powered by several
machine learning systems to support natural language based
searches. ACS with capabilities such as document ranking,
passage ranking, question answering, knowledge graph based
ranking and biomedical topic classification provides a scal-
able solution to COVID-19 researchers and policy makers in
their search and discovery for answers to high priority scien-
tific questions. We present a quantitative evaluation and qual-
itative analysis of the system against other leading COVID-19
search platforms. ACS is top performing across these systems
yielding quality results which we detail with relevant exam-
ples in this work.

Introduction
With the global outbreak of Coronavirus disease (COVID-
19) (Guan et al. 2020), the world is in turmoil. Medical re-
searchers are required to work quickly to fully understand
and to provide a form of intervention for the virus. Due to a
large research focus on the disease, knowledge is published
at a rapid rate throughout the world. One such repository
of information is curated through the COVID-19 Open Re-
search Dataset Challenge (CORD-19) (Wang et al. 2020).
CORD-19 is a collection of over 100,000 of COVID-19 sci-
entific articles that is publicly available for research com-
munity to fight against coronavirus. It aims to connect the
machine learning community with biomedical domain ex-
perts and policy makers in a race to identify effective treat-
ments and management policies for COVID-19. In accor-
dance with this initiative, our goal is to provide a scalable so-
lution to access insightful COVID-19 information easily us-
ing advanced NLP techniques. For example, these questions
should be understood in their natural language form prop-
erly: “What are the recommended medications for COVID-
19?” and “What is the average hospitalization time for pa-
tients?” To retrieve answers and relevant information for
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these questions, we require a system with a strong biomedi-
cal understanding of the natural questions (Rotmensch et al.
2017).

AWS CORD-19 Search (ACS) provides an easy to use
search interface where researchers can query using natural
language questions in addition to traditional keyword-based
search throughout CORD-19 corpus1. It performs document
ranking to retrieve a ranked list of COVID-19 articles based
on relevancy. In addition, it supports passage ranking and
question answering, which extract and highlight the answer
directly from the top relevant passages. Both components
are built with deep learning models.

Figure 1 shows a screenshot of the ACS interface of
querying with a natural language question “What is the mean
value of R0 for COVID-19?” In the top suggested answer
area, the answer 3.28 is highlighted within the top passage.
There are at most 3 suggested answers extracted from differ-
ent article sources. In the bottom retrieved document results,
the article is presented with its author, year, journal, insti-
tution and citation. It is worthwhile to highlight the brows-
ing features. The users can select topic to filter the result,
and sort the result based on best match, most citation, most
published authors and institutions. These capabilities are
supported by the COVID-19 literature topic modeling and
knowledge graph, respectively.

Leveraging CORD-19 corpus, there are a few web search
engines that support COVID-19 search. Google Covid-19
Research Explorer2 and Neural Covidex3 are the other two
leading semantic search web interfaces that are based on ad-
vanced NLP techniques and also support document ranking
and question answering. While these engines can gain high
traction from the public, there is lack of formal evaluation
about their performance. In this paper, we also perform a
systematic study of ACS performance against these two en-
gines.

In the following sections, we will present a system
overview about the various individual Amazon Web Ser-
vices (AWS) products that supports ACS, a performance
evaluation, and future directions to improve ACS.

1https://cord19.aws/
2https://covid19-research-explorer.

appspot.com/
3https://covidex.ai/



Figure 1: AWS CORD-19 Search results page.

System Overview
AWS CORD-19 Search (ACS) is a semantic search engine
that performs document ranking, passage ranking and ques-
tion answering. Additionally, it leverages knowledge graphs
and topic modeling to enrich the biomedical data and make
the search to be more clinically relevant. In this section we
present the overall architecture of the system and a closer
look at several individual components. Figure 2 provides an
overview of this architecture.

Amazon Kendra
Amazon Kendra4 is a semantic search and question an-
swering service provided by AWS for enterprise cus-
tomers. Kendra allows its customers to power natural lan-
guage based searching across their own data. As response
to the worldwide COVID-19 pandemic, Kendra has also
been tooled to support COVID-19 related search using the
CORD-19 article corpus. The end-to-end Kendra system
consists of several components.

• Document ranking (DR) - Like any traditional search en-
gine, Kendra returns a ranked list of relevant documents
based on the user’s query to fulfill their information needs.
A deep semantic search model is used to understand natu-
ral language questions in addition to the keyword search.

• Passage ranking (PR) & Question Answering (QA) -
Kendra ranks the passages and tries to extract the answer
from the top relevant passages with a deep reading com-
prehension model.

4https://aws.amazon.com/kendra/

• FAQ Matching (FAQM) - If there exists Frequently An-
swered Questions database, Kendra will automatically
match a new coming query with FAQs and extract the an-
swer if a strong match is found.

In order to improve Kendra CORD-19 search and make it
clinically more relevant for medical researchers, we lever-
age knowledge extracted using the Amazon Comprehend
Medical (CM) core NERe service as well as topics created
from Amazon Comprehend Custom Classification 5. Both
are used to enrich the data when indexing CORD-19 corpus.

Comprehend Medical
Amazon Comprehend Medical 6 (CM) (Bhatia et al. 2019),
is a HIPAA eligible AWS service for medical domain entity
recognition (Bhatia, Celikkaya, and Khalilia 2018), relation-
ship extraction (Singh and Bhatia 2019) and normalization.
Comprehend Medical supports entity types divided into five
different categories (Anatomy, Medical Condition, Medica-
tion, Protected Health Information, and Test, Treatment, &
Procedure) and four traits (Negation, Diagnosis, Sign and
Symptom). These entities are directly used to enrich the
Kendra search.

COVID-19 Knowledge Graph
Knowledge graphs (KGs) are structural representations of
relations between real-world entities in the form of triplets

5https://docs.aws.amazon.com/comprehend/
latest/dg/how-document-classification.html

6https://aws.amazon.com/comprehend/
medical/



Figure 2: System Architecture.

containing a head entity, a tail entity, and the relation type
connecting them. KG based information retrieval has shown
great success in the past decades (Dalton, Dietz, and Al-
lan 2014). The COVID-19 Knowledge Graph (CKG) (Fig
3) is a directed property graph constructed from the CORD-
19 Open Research Dataset of scholarly articles (Wise et
al. 2020). Entities including scholarly articles, authors, au-
thor institutions, citations, extracted topics and comprehend
medical entities are used to form relations in the CKG. The
resulting KG continues to grow as the CORD-19 dataset in-
creases and currently contains over 335k entities and 3.3M
relations. The CKG powers a number of features on ACS
including: article recommendations, citation-based naviga-
tion, and search result ranking by author or institution pub-
lication count.

Topic Models
Topic modeling is a statistical discovery paradigm for gener-
ating topics that occur in a collection of documents. Perhaps
the most widely used model for topic modeling is Latent
Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003), a
generative model which groups documents together by ob-
served content, often giving each document a mixture of top-
ics it belongs to. An extension of this work termed Z-label
LDA (Andrzejewski and Zhu 2009) utilizes priors to allow
the model to force certain topics which the users have man-
ually curated, or wish to see clustered together.

Generating Topics For the purposes of this work we ex-
perimented with 5, 10, and 20 topic models 7. The outputs
of each clustering size were manually inspected and topic la-
bels were provided by us when inspecting the top ten terms
for each cluster. The final granularity of the topic models

7These models were trained using CORD-19 data available as
of April 6th, 2020.

was chosen by manually deleting and merging topics from
the 20 topic model. In general we were able to clearly ex-
tract groups which centered around important topics includ-
ing virology, proteomics, epidemiology, and cellular biol-
ogy to name a few. However when faced with 20 topics the
less populated ones tended to be noisy, and captured periph-
eral information present in the input, such as language (e.g.
Spanish and French) or provide redundancies with existing
topics (e.g. two topics for Influenza). As a control we ran
a publicly available implementation of Z-label LDA 8 with
no priors which yields topics close to those extracted us-
ing Comprehend Topic Modeling. Although similar we ob-
served better definition in certain groups (such as pulmonary
diseases, and policy/industry), and decided to use this as the
curation entry-point. Our goal was to limit these topics to
ten, and compile them in advance as much as possible. With
the help of medical professionals we eliminated and com-
bined topics to form the following: Vaccines/immunology,
Genomics, Public health Policies, Epidemiology, Clinical
Treatment, Virology, Influenza, Healthcare Industry, Pul-
monary Infections, and Lab Trials (human).

Multi-Label Classification Having to manually feed a
topic model and re-train on the entire corpus once new data
becomes available is largely inefficient. We therefore used
the topic model labels to train a multi-label classifier (Read
et al. 2011). To evaluate the performance of this model we
calculate the average F1 across test samples by calculating
the set overlap between our gold standard (topic model) and
system labels (multi-label classification). This held-out test
set contains 20% of the CORD-19 data available at the time.

Using this metric our trained model achieved an aver-
age F1 of 91.92, with on average 2.37 labels per document.

8http://pages.cs.wisc.edu/˜andrzeje/
research/zl_lda.html



Figure 3: Visualization of COVID-19 Knowledge graph and Knowledge Graph Representation.

Query: coronavirus origin
Question: what is the origin of COVID-19?
Narrative: seeking range of information about the SARS-CoV-2 virus’s origin, including

its evolution, animal source, and first transmission into humans.

Table 1: Example topic from TREC-COVID challenge.

Fewer than 1% of the documents in the test set received no
label, using 0.5 as the confidence threshold.

Evaluation
ACS supports document ranking (DR), passage ranking
(PR) and question answering (QA) using CORD-19 corpus.
Similarly, Google COVID-19 Research Explorer (COVID-
19 RE) and Neural Covidex (Covidex) (Zhang et al. 2020)
are another two semantic searching web engines that facil-
itate DR and answer highlighting for COVID-19 questions.
COVID-19 RE is powered by BERT (Devlin et al. 2019) and
Covidex is based on T5-base model (Nogueira, Jiang, and
Lin 2020). Both incorporate the latest NLP techniques to
perform advanced semantic search. In this section, we com-
pare the overall performance of ACS against COVID-19 RE
and Covidex for their DR, PR and QA components, respec-
tively.

To assess DR performance, we use the TREC-COVID
challenge track (Voorhees et al. 2020), which contains 40
topic sets along with their document relevance judgement.
The topic sets are written by its organizers with biomedical
training, and motivated by search submitted to the National
Library of Medicine and social media. As shown in Table
1, each topic consists of three fields with different levels of
granularity, a keyword-based query (KQ), a more precise
natural language question (NQ), and a longer descriptive
narrative. The DR annotation are performed following the
TREC pooling mechanism. Hundreds participants submitted

ranked lists of documents for each topic set, based on which
a depth of 10 to 20 documents are pooled and combined as a
collection of (q,D) pairs. The pairs are then assessed by an-
notators with in-domain clinical expertise. More explicitly,
the assessors are given a topic set and a list of documents
to be judged. The assessors mark each document in the list
as either ‘Relevant’, ‘Partially Relevant’ or ‘Not Relevant’.
There are three rounds of judgement available that corre-
sponding to three different versions of CORD-19 corpus.
To ensure sufficient coverage of annotation, we aggregate
all rounds results into 33,064 (q,D) relevance judgements.
Since the document id may change across versions, we map
ids from each round to the May 19 release of CORD-19 cor-
pus.

To collect DR results from the three systems, we crawled
the top 50 articles by querying the engines with KQ and
its NQ variation from the topic sets on June 15, 2020. The
crawled data, which are characterized by the article title and
link, are mapped to May 19 CORD-19 corpus. Note that arti-
cles that cannot be found in the corpus are removed to ensure
fair comparison.

We use the standard DR metrics in our evaluation, namely,
the precision and recall at k (P@k, R@k) and normal-
ized discounted cumulative gain in the top k documents
(NDCG@k). Note that we evaluate with k up to 20 since
TREC-COVID has a pooling depth with 20 at most. Table
2 presents the DR performance of the engines over KQ and
NQ, respectively. ACS performs consistently better than the



Search Engine P@1 P@5 P@10 P@20 R@10 R@20 ndcg@20
Keyword Queries

ACS 0.5250 0.5650 0.5325 0.4775 0.0260 0.0459 0.4380
Covidex 0.3421 0.2316 0.2079 0.1658 0.0109 0.0173 0.1633

COVID-19 RE 0.5750 0.5650 0.4775 0.4412 0.0236 0.0429 0.4022
Natural Language Questions

ACS 0.8750 0.7000 0.6400 0.5550 0.0345 0.0582 0.5357
Covidex 0.4750 0.4800 0.4225 0.3625 0.0204 0.0356 0.3229

COVID-19 RE 0.6000 0.5300 0.4925 0.4600 0.0267 0.0474 0.4133

Table 2: Evaluation results on TREC-COVID dataset

2*Search Engine Top3 Top30
EM F1 EM F1

ACS 11.7 35.6 26.0 50.4
Covidex 0.90 18.9 3.60 27.6
COVID-19 RE 10.0 31.8 18.2 43.8

Table 3: Top results variation from KQ to NQ on TREC-
COVID dataset

other engines on NQ and mostly on KQ, and all engines per-
form better on NQ comparing with KQ.

In addition, we are able to evaluate how robust each sys-
tem is against query variation from KQ to NQ. Ideally, the
results shall remain unchanged with query variation that re-
quests the same information. We define exact match (EM)
and F1 score among top k results to evaluate the robustness.
Let Q be the topic sets, and NQk

q , KQk
q denote the top k

searching results of natural language question and keyword
query corresponding to the same topic q ∈ Q, respectively.
As shown in Eq.(1), we take the top k results KQk

q as ground
truth, and compute the average exact match and F1 score of
the top k results NQk

q , and then average over all queries. The
article title string is used as comparison key, and EM and F1
are standard that the maximum is taken over all the ground
truth articles. Table 3 demonstrates that ACS has the best
capability to provide consistent results with query variation.

EM(NQ,KQ, k)

=
1

|Q|
∑
q∈Q

1

k

k∑
i=1

em(NQk
q (i),KQk

q ) (1)

Next, we evaluate the performance of PR and QA us-
ing CovidQA dataset (Tang et al. 2020). CovidQA con-
tains 27 questions which are selected by in-domain volun-
teers as the most promising COVID-19 research directions.
The CovidQA answers are from judgement of 124 question-
article pairs only. To ensure a sufficient annotation coverage
over the 3 engines, we leverage our internal annotation re-
sources to make PR and QA judgement. As shown in Figure
4, we crawled the top 3 results characterized by the article,

displayed passage and the highlighted text snippet on June
15, 2020 from ACS, Covidex and COVID-19 RE, respec-
tively. After that, the annotators assess PR and QA in terms
of whether the displayed passage contains relevant informa-
tion and whether the highlighted text snippet answers the
given question. To avoid bias, the crawled results are com-
bined and shuffled randomly, therefore, the annotators do
not have access to the source engine and the rank position
information during the judgement. We allocate 2 annotators
to make independent judgements, and take average of their
assessment as the final label.

Table 4 presents precision of top PR and QA results. We
use P@k instead of EM and F1 to evaluate QA since ACS
highlights the answer while Covidex and COVID-19 RE
highlight the sentence that contains the answer. Instead of
matching the answer, it is more reasonable to judge whether
the highlighted text answers the question and compute pre-
cision. ACS achieves better accuracy on both PR and QA
on most metrics. Note that ACS highlights answer snippet
for at most three passages , while Covidex and COVID-
19 RE highlight all displayed passages. This explains why
ACS P@3 underperforms COVID-19 RE. Explicitly with
an example, Figure 5 displays the topmost results of query-
ing “What is the incubation period of virus” from the three
systems. ACS highlights the answer in the passage. In con-
trast, Covidex presents an article published at 2004 with in-
formation of virus which is irrelevant with coronavirus, and
COVID-19 RE does not answer the question at all.

As evident from the above results, ACS is one of the top-
performing systems that provides high quality informative
results over CORD-19 search.

Paper recommendation
CKG consists of multiple type of nodes related to author,
affiliation, topics, entities etc. Knowledge Graph Embed-
ding(KGE) models generate embeddings solely by taking
into account the structure of the graph. In order to capture
semantic information across the CORD-19 scientific articles
we leverage SciBERT to generate Semantic embeddings.
Thus, for each paper we captured both semantic as well as
KGE. (Wise et al. 2020) provides the details around the cre-
ation and analysis of Covid Knowledge Graph. Scientific
article recommendations are made possible by a document
similarity engine that quantifies similarity between docu-



Figure 4: PR and QA annotation against CovidQA queries and top 3 engine results.

2*Search Engine PR QA
P@1 P@2 P@3 P@1 P@2 P@3

ACS 0.4074 0.5370 0.4938 0.3333 0.2593 0.2099
Covidex 0.4074 0.4444 0.4074 0.1481 0.1852 0.2099
COVID-19 RE 0.4074 0.3704 0.3580 0.2963 0.2407 0.2593

Table 4: Passage ranking (PR) and question answering (QA) performance on CovidQA dataset

ments by combining semantic embeddings obtained from a
pre-trained language model (Beltagy, Lo, and Cohan 2019)
with document knowledge graph embeddings (Wang et al.
2017) (Zheng et al. 2020) capturing topological information
from the CKG. Due to lack of supervised signals for select-
ing the paper recommendation model, we used topic simi-
larity between the source and the top top− 5 similar papers
to select the right embeddings. From the Table 5, we note
KGE embedding achieves a comparatively lower score than
RGCN. Finally, the combination of semantic and KGE em-
beddings achieves the lowest Jaccard score.

Table 5: Topic similarity (Wise et al. 2020) (Jaccard dis-
tance) of recommendations vs random baseline.

Method Topic DistanceJaccard
Random .821
SemanticSem .360
GraphKGE .345
GraphRGCN .654
Sem. & KGE .311

Analysis
In this section we look into a number of sample queries to
shed light on how different components of ACS help in im-
proving search results. We begin by observing how small
semantic differences in the query alter the results. The first
sample in Figure 6 is specific to medications. While the
top result does not include the term medication the sys-
tem highlights ribavirin and corticosteroids. The CORD-19
system understands that these terms represent medications
with the help of CM NERe engine. In the second example

we change medications to measures and observe the top re-
sult discussing border control, and quarantine. This clearly
demonstrates that Amazon Kendra has a deep comprehen-
sion of token and query meanings.

Finally, we take a look at the effects of topic modeling
when grouping and filtering results. The last two examples
in Figure 6 showcase the difference this makes in the top
result. Without specifying any topic the resulting article dis-
cusses high level policy, specifically quarantine measures in
Singapore. When we filter by clinical treatment the top re-
sult instead focuses on infections which is covered in the
clinical setting. Furthermore the extracted text returned to
the user still focuses on lessons learned staying true to the
query.

Limitations and Future Directions
AWS CORD-19 is an initial step towards helping medical
researchers find relevant content in a timely and meaningful
way. In order to improve the robustness, we see following
areas as direction for future research.

Feedback Loop - Since ACS is a search engine the moti-
vation would be to evaluate it as such; using well-established
methodologies based on test collections—comprising topics
(information needs) and human annotations. Since no des-
ignated evaluation data exist, our initial focus is to capture
different interactions and feedback. Currently, ACS lacks the
feedback loop and federated learning approaches where the
system would continuously learn and improve the search.
However, the system captures feedback from the researchers
in the form of implicit and explicit reactions. Implicit feed-
back evaluation consists of topics of interests, their clicks
as well as the ranking of the results which were selected
by medical researchers. Explicit feedback evaluation is cap-



ACS Covidex COVID-19 RE

Importance of Social Distancing: Mod-
eling the spread of 2019-nCoV using
Susceptible-Infected-Quarantined-
Recovered-t model

Deadly viral syndrome mimics Prediction of the virus incubation period
for COVID-19 and future outbreaks

“Studies on the nature of the virus have
suggested different incubation periods of
the virus, and reports have suggested a
median incubation period of 5-6 days
and a very high symptom probability pe-
riod of 14 days [5] ”

“...The incubation period is typically 3
to 14 days with the symptoms of an
acute nonspecific, flulike illness devel-
oping suddenly...The incubation period
is 7 to 10 days before the onset of symp-
toms [37]. This incubation period pro-
vides the potential for worldwide ex-
posure because a person harboring the
virus can expose the world at large via
air travel...”

“. . . while minimizing the negative con-
sequences of the quarantine. 70 71 The
length of the incubation period varies
both across and within virus families 4 .
To our knowledge, 72 genomic features
(if any) that correlate with the incuba-
tion. . . ”

Figure 5: Top-1 result of article title and displayed passage by querying ’What is the incubation period of virus?’

tured by providing up-down rating associated with each
search results. In the future results can be personalized based
on this feedback. Now that we have a system in place, our
efforts have shifted to broader engagement with potential
stakeholders to solicit additional guidance, while trying to
balance between the features and ranking.

Q&A Curation - Curation and normalization of ques-
tions have potential a use-case of presenting trending ques-
tions asked by the medical research community at a partic-
ular point. However, curation would involve capturing the
questions asked as well as identifying similar questions that
can be later normalized. Currently, there is no mechanism to
curate the questions asked by the researchers.

Summarization - Currently, ACS outputs the relevant
passage based on the query. It would be beneficial to get the
overall summary of the paper. A potential future direction
would be to generates summaries (Raffel et al. 2019) from
paper abstracts and full body.

Conclusion
This paper describes our efforts in building AWS CORD-19
Search Engine with its capabilities consisting of document
ranking, passage ranking and question answering. The deep
semantic search model is leveraged to support querying with
natural language questions. The search is further enhanced
with topic modeling and knowledge graph. Our solution
is powered by Amazon Kendra, Comprehend Medical and
Neptune which incorporate the latest neural architectures
to provide information access capabilities to the CORD-19
challenge. By a systematic comparison with other public
semantic searching engines that utilize the advanced NLP
techniques and support similar component over COVID-19
search, we have demonstrated that ACS is one of the top-
performing engines and is powerful on both its document
ranking and question answering components. We hope that
our solution can prove useful in the fight against this global
pandemic, and that the capabilities we have developed can

be applied to access the scientific literature more easily and
broadly.
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